words to know

reciprocal multiplicative inverse

Lesson 6 DIVIDE FRACTIONS NY-6,NS.1

INTRODUCTION

Real-World Connection

At Bina's yogurt store, each sample serving is $\frac{1}{4}$ cup. Bina has $2\frac{2}{3}$ cups left of strawberry and she wants to find out how many samples she can serve.

Bina can find the answer by dividing fractions. Let's practice the skills in the **Guided Instruction** and **Independent Practice** and, at the end of the lesson, see how many samples Bina can serve!

What I Am Going to Learn

- How to divide a fraction by a fraction
- How to solve problems involving dividing fractions

What I May Already Know

- I know how to multiply fractions.
- I know how to divide a unit fraction by a whole number.
- I know how to divide a whole number by a unit fraction.

Vocabulary in Action

- There are different ways to think about dividing fractions.
- You can use models to represent the problem.
- You can use equations and multiply by the **reciprocal**, known as the **multiplicative inverse**.
- When you multiply by the reciprocal, the result is 1: The reciprocal of $\frac{2}{3}$ is $\frac{3}{2}$ because $\frac{2}{3} \times \frac{3}{2} = 1$.

EXAMPLE

Divide: $3 \div \frac{2}{3}$

How many groups of $\frac{2}{3}$ are in 3?

A model can help you see the groups. Divide each whole into thirds.

There are 4 groups of $\frac{2}{3}$, with $\frac{1}{3}$ left.

One-third is half of a group of $\frac{2}{3}$, so there are $4\frac{1}{2}$ groups of $\frac{2}{3}$ in 3.

You can use a model to divide a fraction by a fraction.

EXAMPLE

Laura has $\frac{7}{8}$ gallon of juice at her birthday party. Each guest will get $\frac{1}{16}$ gallon of juice. How many guests can Laura serve?

In this problem, $\frac{7}{8}$ is divided by $\frac{1}{16}$. How many $\frac{1}{16}$ s are there in $\frac{7}{8}$?

	1 B		<u>1</u> 3	1_ 8	3	1	3	-	1 8	-	1 B		<u>1</u> 3	
<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	
16	16	16	16	16	16	16	16	16	16	16	16	16	16	

Each $\frac{1}{8}$ is made up of $\frac{2}{16}$, so there are 14 groups of $\frac{1}{16}$ in $\frac{7}{8}$. So, Laura can serve 14 guests.

You can also divide a fraction by a whole number. If Laura knew she had 14 guests and $\frac{7}{8}$ gallon of juice, how much would each guest get?

$$\frac{7}{8}$$
 gal $\div 14 = \frac{1}{16}$ gallon

When you divide by a number, you get the same answer by multiplying by the reciprocal of that number.

EXAMPLE

How wide is a rectangular sheet of wrapping paper that has a length of $\frac{3}{4}$ meter and an area of $\frac{1}{2}$ square meters?

Step One Since you are given the area and length, divide the area by the length to find the width.

 $\frac{1}{2} \div \frac{3}{4}$

Step Two Multiply by the reciprocal of the divisor.

$$\frac{1}{2} \div \frac{3}{4} = \frac{1}{2} \times \frac{4}{3} = \frac{4}{6} = \frac{2}{3}$$

So, the width of the sheet of wrapping paper is $\frac{2}{3}$ meter.

Copying is prohibited.

THINK ABOUT IT If $3 \div \frac{2}{3} = 4\frac{1}{2}$, then $4\frac{1}{2} \times \frac{2}{3} = 3$.

SKETCH IT

A drawing is always useful if it helps you understand the math, regardless of the situation.

TURN AND TALK

Does multiplying by the reciprocal work for whole numbers? Does $30 \div 5 = 30 \times \frac{1}{5}$, or $5 \div 30 = 5 \times \frac{1}{30}$?

GUIDED INSTRUCTION

1. A 2-pound wheel of cheese is divided into wedges, each weighing $\frac{2}{3}$ pound. How many wedges are there?

Step One Show $2 \div \frac{2}{3}$ with a fraction model.

Step Two There are 3 groups of $\frac{2}{3}$ in 2.

$$2 \div \frac{2}{3} = 3$$

So, the wheel of cheese can be cut into wedges, each weighing $\frac{2}{3}$ pound.

2. A recipe uses $\frac{3}{4}$ cup of milk. Daniel has $\frac{3}{8}$ cup of milk. How much of the recipe can Daniel make?

Step One Make a fraction model dividing $\frac{3}{4}$ into eighths.

SHARE IT

Does your family typically have cheese for special occasions? If your family was going to get a large package of cheese, what type of cheese would it likely be? **3.** Which of the following represents $\frac{2}{3} \div \frac{3}{4}$?

4. Scott says that $\frac{7}{10} \div 3 = \frac{7}{30}$ because $\frac{7}{30} \times 3 = \frac{7}{10}$. Is Scott correct? Why or why not?

TIPS AND HINTS

When you divide by a number, you can get the same answer by multiplying by the reciprocal of that number.

Learning Together

Working with a partner, write each of the fractions in the table below on a card. Also, make 30 equal signs. Then align all of the cards in sets that show these steps: division problems, equal signs, problems including the reciprocals of the divisors, equal signs, answers, and simplified answers (if applicable).

Example:
$$\frac{2}{3} \div \frac{1}{3} = \frac{2}{3} \times \frac{3}{1} = \frac{6}{3} = 2$$

For cards:

$\frac{4}{5} \div \frac{5}{6}$	$\frac{3}{4} \times \frac{3}{2}$	<u>9</u> 8	1 <u>3</u>
$\frac{4}{5} \div \frac{6}{5}$	$\frac{3}{4} \times \frac{2}{3}$	<u>35</u> 8	4 <u>3</u>
$3 \div \frac{7}{12}$	$\frac{9}{10} \times \frac{4}{3}$	<u>40</u> 27	1 <u>1</u>
$\frac{7}{12} \div \frac{1}{3}$	$\frac{1}{5} \times \frac{8}{7}$	<u>36</u> 7	1 <u>13</u> 27
$\frac{3}{4} \div \frac{2}{3}$	$\frac{7}{8} \times \frac{5}{1}$	<u>36</u> 30	5 <u>7</u>
$\frac{3}{4} \div \frac{3}{2}$	$\frac{10}{9} \times \frac{4}{3}$	<u>21</u> 12	$1\frac{1}{5}$
$\frac{10}{9} \div \frac{3}{4}$	$\frac{4}{5} \times \frac{6}{5}$	<u>6</u> 12	$\frac{1}{2}$
$\frac{9}{10} \div \frac{3}{4}$	$\frac{3}{1} \times \frac{12}{7}$	<u>7</u> 4	$\frac{2}{3}$
$\frac{1}{5} \div \frac{7}{8}$	$\frac{4}{5} \times \frac{5}{6}$	$\frac{8}{35}$	<u>24</u> 25
$\frac{7}{8} \div \frac{1}{5}$	$\frac{7}{12} \times \frac{3}{1}$	1 <u>6</u> 30	
		<u>20</u> 30	

How Am I Doing?

What questions do you have?

How can you divide a fraction by a fraction by multiplying by

the reciprocal?

Give an example of a situation in which you would divide a fraction by

a fraction.

Circle the sign that shows how you are doing with the skill.

I am stuck.

I almost have it.

I understand the skill.

Copying is prohibited.

INDEPENDENT PRACTICE 1

Mrs. Roscoe can bake a batch of 8 cupcakes in $\frac{3}{4}$ hour. How many cupcakes can she bake in $5\frac{1}{4}$ hours?

- A 8
- **B** 28
- **C** 32
- **D** 56
- Mr. Stephens has a board that is $8\frac{5}{6}$ feet long. He needs to cut it in $2\frac{1}{2}$ -foot lengths. What is the greatest number of full lengths he can cut from the board?

TIPS AND HINTS

 $\frac{3}{4}$ hour is less than 1 hour, so you know you'll have more than 8 cupcakes per hour.

SKETCH IT

Making a quick drawing of the board and the cuts is a good way to check your answer for reasonableness.

B 4

2

- **C** 6
- **D** 10
- 3 A chef is making $22\frac{3}{4}$ cups of chowder. Each bowl of chowder holds $\frac{7}{8}$ cup. The restaurant charges \$2.95 per bowl. How much money will the restaurant earn from selling all of the soup?
 - A \$26.00
 - **B** \$58.72
 - **C** \$67.11
 - **D** \$76.70

THINK ABOUT IT

Can mentally rounding $22\frac{3}{4}$ to 23, $\frac{7}{8}$ to 1, and 2.95 to 3 help you make a meaningful estimate? 4

Noah is putting together a 27-minute radio show. How many $2\frac{1}{2}$ -min interviews can he include, and how much time will be left over after the last interview?

Show your work.

SKETCH IT

Making a fraction model can help you easily see the answer.

Answer

INDEPENDENT PRACTICE 2

Which of the following represent	nts 🗧	÷	3	?
----------------------------------	-------	---	---	---

- $A \qquad \frac{2}{5} \times \frac{8}{3}$ $B \qquad \frac{6}{40}$ $C \qquad \frac{5}{2} \times \frac{3}{8}$
- $D \qquad \frac{2}{5} \times \frac{3}{8}$

2 Which is the value of the expression $7 \div \frac{2}{3} = ?$ A $\frac{2}{21}$ C $4\frac{1}{3}$

- **B** $\frac{3}{14}$ **D** $10\frac{1}{2}$
- 3 If $\frac{136}{195} \times \frac{15}{17} = \frac{8}{13}$, which of the following equations is true?
 - A $\frac{8}{13} \times \frac{15}{17} = \frac{136}{195}$
 - **B** $\frac{136}{195} \div \frac{8}{13} = \frac{15}{17}$
 - **C** $\frac{8}{13} \div \frac{15}{17} = \frac{136}{195}$
 - $D \qquad \frac{136}{195} \div \frac{15}{17} = \frac{8}{13}$
- 4 Mr. Evans is canning pears. After processing the pears, he can fill 1 canning jar for every $2\frac{1}{2}$ pounds of fresh pears that he picked. If Mr. Evans picked 15 pounds of pears, how many canning jars can he fill after processing the pears?

Α	5			С	12
В	6			D	17

5

Which of the following expressions can be used to find the quotient of $\frac{3}{4} \div \frac{2}{5}$?

Α	$\frac{3+2}{4+5}$	С	$\frac{3 \times 2}{4 \times 5}$
В	$\frac{3-2}{4-5}$	D	$\frac{3 \times 5}{4 \times 2}$

The image below shows the card on which Roberto will display stamps.

Roberto puts same-sized stamps on the card with no gaps or overlaps. How many stamps will fit on the card?

Α	90	С	45
В	60	D	37

7 Connie divided $7\frac{2}{3}$ by $3\frac{1}{5}$ and found a quotient of $\frac{48}{115}$. What mistake, if any, did Connie make?

- A She converted the mixed numbers to fractions incorrectly.
- **B** She multiplied only the numerators and not the denominators.
- **C** She multiplied by the reciprocal of the dividend instead of the reciprocal of the divisor.
- D There is no mistake; her result is correct.

8

9

A rectangular rug has a length of $\frac{7}{8}$ yard and an area of $\frac{3}{4}$ square yard. What is its width? Use equations to find the answer.

Show your work.

Answer _____ yard

Represent 2 ÷ $\frac{3}{4}$ in a word problem. Answer the problem.

Explain your answer.

EXIT TICKET

Now that you have mastered dividing with fractions, let's solve the problem in the Real-World Connection.

At Bina's yogurt store, each sample serving is $\frac{1}{4}$ cup. Bina has $2\frac{2}{3}$ cups of strawberry yogurt left. How many more servings can she make?

