WORDS TO KNOW

reciprocal
multiplicative inverse
\longrightarrow

Lesson 6

 DIVIDE FRACTIONS NY-6.Ns. 1
INTRODUCTION

Real-World Connection

At Bina's yogurt store, each sample serving is $\frac{1}{4}$ cup. Bina has $2 \frac{2}{3}$ cups left of strawberry and she wants to find out how many samples she can serve.

Bina can find the answer by dividing fractions. Let's practice the skills in the Guided Instruction and Independent Practice and, at the end of the lesson, see how many samples Bina can serve!

What I Am Going to Learn

- How to divide a fraction by a fraction
- How to solve problems involving dividing fractions

What I May Already Know

- I know how to multiply fractions.
- I know how to divide a unit fraction by a whole number.
- I know how to divide a whole number by a unit fraction.

Vocabulary in Action

- There are different ways to think about dividing fractions.
- You can use models to represent the problem.
- You can use equations and multiply by the reciprocal, known as the multiplicative inverse.
- When you multiply by the reciprocal, the result is 1 : The reciprocal of $\frac{2}{3}$ is $\frac{3}{2}$ because $\frac{2}{3} \times \frac{3}{2}=1$.

EXAMPLE

Divide: $3 \div \frac{2}{3}$
How many groups of $\frac{2}{3}$ are in 3 ?
A model can help you see the groups. Divide each whole into thirds.

THINK ABOUT IT

If $3 \div \frac{2}{3}=4 \frac{1}{2}$, then $4 \frac{1}{2} \times \frac{2}{3}=3$.

| $\frac{1}{3}$ | $\frac{1}{3}$ | $\frac{1}{3}$ |
| :--- | :--- | :--- | | $\frac{1}{3}$ | $\frac{1}{3}$ | $\frac{1}{3}$ |
| :--- | :--- | :--- |

$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$

There are 4 groups of $\frac{2}{3}$, with $\frac{1}{3}$ left.
One-third is haif of a group of $\frac{2}{3}$, so there are $4 \frac{1}{2}$ groups of $\frac{2}{3}$ in 3 .
You can use a model to divide a fraction by a fraction.

EXAMPLE

Laura has $\frac{7}{8}$ gallon of juice at her birthday party. Each guest will get $\frac{1}{16}$ gallon of juice. How many guests can Laura serve?
In this problem, $\frac{7}{8}$ is divided by $\frac{1}{16}$. How many $\frac{1}{16}$ s are there in $\frac{7}{8}$?

$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$									
11	11	11	1	1	1	1		1		1	
1616	1616	1616	6	16	6	16		16		16	

Each $\frac{1}{8}$ is made up of $\frac{2}{16}$, so there are 14 groups of $\frac{1}{16}$ in $\frac{7}{8}$.
So, Laura can serve 14 guests.
You can also divide a fraction by a whole number. If Laura knew she had
14 guests and $\frac{7}{8}$ gallon of juice, how much would each guest get?
$\frac{7}{8}$ gal $\div 14=\frac{1}{16}$ gallon

When you divide by a number, you get the same answer by multiplying by the reciprocal of that number.

EXAMPLE

How wide is a rectangular sheet of wrapping paper that has a length of $\frac{3}{4}$ meter and an area of $\frac{1}{2}$ square meters?
Step One Since you are given the area and length, divide the area by the length to find the width.
$\frac{1}{2} \div \frac{3}{4}$
Step Two Multiply by the reciprocal of the divisor.
$\frac{1}{2} \div \frac{3}{4}=\frac{1}{2} \times \frac{4}{3}=\frac{4}{6}=\frac{2}{3}$
So, the width of the sheet of wrapping paper is $\frac{2}{3}$ meter.

SKETCH IT

A drawing is always useful if it helps you understand the math, regardless of the situation.

- TURN AND TALK

Does multiplying by the reciprocal work for whole numbers?
Does $30 \div 5=30 \times \frac{1}{5}$, or
$5 \div 30=5 \times \frac{1}{30}$?

SHARE IT

Does your family typically have cheese for special occasions? If your family was going to get a large package of cheese, what type of cheese would it likely be?

GUIDED INSTRUCTION

1. A 2 -pound wheel of cheese is divided into wedges, each weighing $\frac{2}{3}$ pound. How many wedges are there?

Step One Show $2 \div \frac{2}{3}$ with a fraction model.

Step Two There are 3 groups of $\frac{2}{3}$ in 2 .
$2 \div \frac{2}{3}=3$
 each weighing $\frac{2}{3}$ pound.
2. A recipe uses $\frac{3}{4}$ cup of milk. Daniel has $\frac{3}{8}$ cup of milk. How much of the recipe can Daniel make?
Step One Make a fraction model dividing $\frac{3}{4}$ into eighths.

Step Two There are 2 groups of $\frac{3}{8}$ in $\frac{3}{4}$.
Daniel has 1 group of $\frac{3}{8}$ cup of milk, not 2 . So, he can make of the recipe.

3. Which of the following represents $\frac{2}{3} \div \frac{3}{4}$?
(A) $\frac{2}{3} \times \frac{3}{4}$
(B) $\frac{2}{3} \times \frac{4}{3}$
(C) $\frac{3}{2} \times \frac{3}{4}$
(D) $\frac{1}{2}$
4. Scott says that $\frac{7}{10} \div 3=\frac{7}{30}$ because $\frac{7}{30} \times 3=\frac{7}{10}$. Is Scott correct?

Why or why not?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

TIPS AND HINTS

When you divide by a number, you can get the same answer by multiplying by the reciprocal of that number.

Learning Together

Working with a partner, write each of the fractions in the table below on a card. Also, make 30 equal signs. Then align all of the cards in sets that show these steps: division problems, equal signs, problems including the reciprocals of the divisors, equal signs, answers, and simplified answers (if applicable).

Example: $\frac{2}{3} \div \frac{1}{3}=\frac{2}{3} \times \frac{3}{1}=\frac{6}{3}=2$
For cards:

$\frac{4}{5} \div \frac{5}{6}$	$\frac{3}{4} \times \frac{3}{2}$	$\frac{9}{8}$	$1 \frac{3}{4}$
$\frac{4}{5} \div \frac{6}{5}$	$\frac{3}{4} \times \frac{2}{3}$	$\frac{35}{8}$	$4 \frac{3}{8}$
$3 \div \frac{7}{12}$	$\frac{9}{10} \times \frac{4}{3}$	$\frac{40}{27}$	$1 \frac{1}{8}$
$\frac{7}{12} \div \frac{1}{3}$	$\frac{1}{5} \times \frac{8}{7}$	$\frac{36}{7}$	$1 \frac{13}{27}$
$\frac{3}{4} \div \frac{2}{3}$	$\frac{7}{8} \times \frac{5}{1}$	$\frac{36}{30}$	$5 \frac{1}{7}$
$\frac{3}{4} \div \frac{3}{2}$	$\frac{10}{9} \times \frac{4}{3}$	$\frac{21}{12}$	$1 \frac{1}{5}$
$\frac{10}{9} \div \frac{3}{4}$	$\frac{4}{5} \times \frac{6}{5}$	$\frac{6}{12}$	$\frac{1}{2}$
$\frac{9}{10} \div \frac{3}{4}$	$\frac{3}{1} \times \frac{12}{7}$	$\frac{7}{4}$	$\frac{2}{3}$
$\frac{1}{5} \div \frac{7}{8}$	$\frac{4}{5} \times \frac{5}{6}$	$\frac{8}{35}$	$\frac{24}{25}$
$\frac{7}{8} \div \frac{1}{5}$	$\frac{7}{12} \times \frac{3}{1}$	$1 \frac{6}{30}$	

|| || || || || || || || || || || ||

How Am I Doing?
\qquad
What questions do you have?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
How can you divide a fraction by a fraction by multiplying by the reciprocal?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Give an example of a situation in which you would divide a fraction by a fraction.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

INDEPENDENT PRACTICE 1

1 Mrs. Roscoe can bake a batch of 8 cupcakes in $\frac{3}{4}$ hour. How many cupcakes can she bake in $5 \frac{1}{4}$ hours?

A 8
B 28
C 32
D 56

2 Mr. Stephens has a board that is $8 \frac{5}{6}$ feet long. He needs to cut it in $2 \frac{1}{2}$ foot lengths. What is the greatest number of full lengths he can cut from the board?

A 3
B 4
C 6
D 10

3 A chef is making $22 \frac{3}{4}$ cups of chowder. Each bowl of chowder holds $\frac{7}{8}$ cup. The restaurant charges $\$ 2.95$ per bowl. How much money will the restaurant earn from selling all of the soup?

SKETCHIT

Making a quick drawing of the board and the cuts is a good way to check your answer for reasonableness.

THINK ABOUT IT
Can mentally rounding $22 \frac{3}{4}$ to 23 , $\frac{7}{8}$ to 1 , and 2.95 to 3 help you make a meaningful estimate?

A $\$ 26.00$
B $\$ 58.72$
C $\$ 67.11$
D $\quad \$ 76.70$ many $2 \frac{1}{2}$-min interviews can he include, and how much time will be left over after the last interview?

SKETCH IT

Making a fraction model can help you easily see the answer.

Show your work.

Answer

\qquad

INDEPENDENT PRACTICE 2

1 Which of the following represents $\frac{2}{5} \div \frac{3}{8}$?
A $\frac{2}{5} \times \frac{8}{3}$
B $\frac{6}{40}$
C $\quad \frac{5}{2} \times \frac{3}{8}$
D $\quad \frac{2}{5} \times \frac{3}{8}$

2 Which is the value of the expression $7 \div \frac{2}{3}=$?
A $\frac{2}{21}$
C $4 \frac{1}{3}$
B $\frac{3}{14}$
D $\quad 10 \frac{1}{2}$

3 If $\frac{136}{195} \times \frac{15}{17}=\frac{8}{13}$, which of the following equations is true?
A $\frac{8}{13} \times \frac{15}{17}=\frac{136}{195}$
B $\frac{136}{195} \div \frac{8}{13}=\frac{15}{17}$
C $\quad \frac{8}{13} \div \frac{15}{17}=\frac{136}{195}$
D $\frac{136}{195} \div \frac{15}{17}=\frac{8}{13}$

4 Mr. Evans is canning pears. After processing the pears, he can fill 1 canning jar for every $2 \frac{1}{2}$ pounds of fresh pears that he picked. If Mr. Evans picked 15 pounds of pears, how many canning jars can he fill after processing the pears?
A 5
C 12
B 6
D 17
A $\frac{3+2}{4+5}$
C $\quad 3 \times \frac{2}{4 \times 5}$
B $\frac{3-2}{4-5}$
D $\frac{3 \times 5}{4 \times 2}$

6
The image below shows the card on which Roberto will display stamps.
$7 \frac{1}{2}$ in.

5 in.

Roberto puts same-sized stamps on the card with no gaps or overlaps. How many stamps will fit on the card?
A 90
C 45
B 60
D 37

7 Connie divided $7 \frac{2}{3}$ by $3 \frac{1}{5}$ and found a quotient of $\frac{48}{115}$. What mistake, if any, did Connie make?

A She converted the mixed numbers to fractions incorrectly.
B She multiplied only the numerators and not the denominators.
C She multiplied by the reciprocal of the dividend instead of the reciprocal of the divisor.

D There is no mistake; her result is correct.

8 A rectangular rug has a length of $\frac{7}{8}$ yard and an area of $\frac{3}{4}$ square yard. What is its width? Use equations to find the answer.

Show your work.

Answer \qquad yard

9 Represent $2 \div \frac{3}{4}$ in a word problem. Answer the problem.
Explain your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Now that you have mastered dividing with fractions, let's solve the problem in the Real-World Connection.
At Bina's yogurt store, each sample serving is $\frac{1}{4}$ cup. Bina has $2 \frac{2}{3}$ cups of strawberry yogurt left. How many more servings can she make?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

